
Considerations for performance portability in a commercial particle-in-cell 
codeB. M. Cowan, S. Averkin, J. R. Cary, J. Leddy, S. W. Sides, and I. Zilberter, Tech-X Corporation

© 2020 Tech-X Corporation

Support provided by U.S. Defense Advanced Research Projects Agency Contract W31P4Q-16-C-0009 (SBIR).
Vorpal simulations used resources of the National Energy Research Scientific Computing Center, which is 

supported by the Office of Science of the U.S. DOE under Contract DE-AC02-05CH11231.

2020 Performance, Portability, and Productivity in HPC Forum, Sep. 1–2, 2020

TECH-X CORPORATION

Abstract
We describe the development of performance portability features in the commercial 
multiphysics particle-in-cell code VSim. VSim was designed nearly 20 years ago (originally 
as Vorpal), with its first applications roughly four years later. Using object-oriented methods, 
VSim was designed to allow runtime selection from multiple field solvers, particle dynamics, 
and reactions. It has been successful in modeling for many areas of physics, including fusion 
plasmas, particle accelerators, microwave devices, and RF and dielectric structures. Now it 
is critical to move to exascale systems, with their compute accelerator architectures, massive 
threading, and advanced instruction sets. Here we discuss how we are moving this complex, 
multiphysics computational application to the new computing paradigm, and how it is done in 
a way that keeps the application producing physics during the move. We present 
performance results showing significant speedups in all parts of the PIC loop, including field 
updates, particle pushes, and reactions.
We also describe considerations particular to commercial codes, most significantly the need 
to support Microsoft Windows. Customers of commercial scientific software often use 
Windows workstations on their desks, so the software must be built to run natively on 
Windows. The challenge here is that the Windows build environment is markedly different 
from those on Unix-like systems. Many packages require Microsoft Visual Studio—it is the 
only supported host compiler for CUDA, for instance—which has different semantics than 
commonly used compilers on other platforms. It also tends to lag in performance features 
such as OpenMP, necessitating the use of mixed-compiler toolchains. In addition, the 
Windows scripting environment and path name conventions are different, complicating 
package management scripts. Since VSim relies on community codes for some of its 
features, we have encountered these issues in our efforts to maintain Windows compatibility 
for our toolchain. We have also explored the possibility of bringing Windows support to the 
performance portability library Kokkos, and report on some of the issues therein.

Background: Particle-in-cell

• Lorentz force interpolated from gridded fields
• Currents deposited to grid from particles

Push particles

Process reactions Deposit current to 
grid

Advance fields

Interpolate fields to 
particle positions

Challenges of PIC on GPUs and many-core CPUs:
• Field update can be straightforward: Each thread/vector lane updates a cell

• But naïve approach does not optimize for memory bandwidth
• Field interpolation and current deposition present problems

• It’s not known a priori which cells particles occupy and hence which field 
values are needed

• Naïve one-particle-per-thread memory accesses won’t be coalesced
• Deposition may also experience race conditions: Multiple threads try to write 

the same current value
• Flexible multiphysics code requires modularity, but modern architectures 

complicate fine-grained runtime polymorphism

General approaches
• Take advantage of modern hardware

• Graphics processing units (GPUs) offer tremendous computational 
performance

• Much greater processing capability per monetary and power cost
• Achieved through massive parallelism
• CPU performance increasing through core count, vector instructions

• Write performance-portable code
• Write main computational procedures (e.g. cell field update, particle push) in 

functions that can be executed on both host and device
• On CPU, function will be executed in a (vectorized) loop
• On GPU, function will be executed by a thread

• Performance frameworks
• Use CUDA on GPU
• Use OpenMP on CPU for multithreading and to trigger generation of SIMD 

instructions
• Exploring performance portability libraries (e.g. Kokkos)

• Maintain multiphysics features
• Design main management routines—dispatchers—to work with multiple 

algorithm variants
• Different types of field updates, e.g. absorbing boundaries, controlled 

dispersion
• High-order particles: Complicates memory management
• Other physics: Metallic boundaries, dielectric materials, reactions, cut 

cells…
• Transition to new infrastructure

• Start with deep infrastructure: Grid objects, multidimensional arrays
• Proceed with dependent features: fields, particles, collisions
• Code in new infrastructure encapsulated in separate performance library
• Interfaces to performance library added to VSim code base

Results

Simulation time for a simulation 
of Rayleigh-Taylor instability 
with collisions.

Raw FDTD sees 4 Gcells/s on an NVIDIA GeForce GTX 1080 Ti GPU in single 
precision. FDTD with embedded boundary dielectrics and absorbing boundaries: 
Speedup of 2× Cori Haswell node results from software improvement alone. 
Additional speedup obtained on GPUs and KNL. These developments enable 
highly performant photonics simulations.

Needs of commercial software

Commercial scientific software requires not just performance portability, but 
deployability: Software must be able to be easily installed, and perform well, on a 
wide range of customer hardware, without the developer having access to the 
hardware or even knowing its configuration beforehand. As a commercial 
scientific software developer:
• We can’t assume that the customer

• Can build software
• Can install dependencies
• Can manage drivers/system software
• “I don’t have administrator privileges on my computer.” –Magnet engineer at 

national lab partner
• So we have to

• Provide installation in user space via installer or tarball
• Have software perform well on customer machine without access to it
• Support Windows

• Software is closed-source, but we use, and contribute to, community software 
(Trilinos, VisIt...)

Particle update on the GPU gets 
nearly 200 M particles/s. This 
shows a simulation of a hot 
plasma, with slight decrease in 
speed as the particle layout loses 
regularity.

Observations about Windows

Scripting environment
Windows’ native scripting environment is DOS, which is fundamentally different 
from Unix shells
• Paths, command-line argument conventions are different
• Few scientific software developers are conversant in DOS
• But some required Windows development tools adhere to DOS conventions

There are some ways around this:
• Cygwin provides Windows executables that mimic standard Unix equivalents

• Start in bash shell
• Some tools can use Unix or Windows path conventions, and convert 

between them
• Environment variables set from Windows environment and visible in 

Windows programs
• The Windows Subsystem for Linux (WSL) provides a complete Linux 

distribution (e.g. Ubuntu) within Windows 10
• Can run Windows executables from within Linux environment
• But programs not necessarily WSL-aware: For instance, CMake for Linux 

running in WSL assumes Unix-style command-line arguments, even for 
Visual C++ compiler for Windows

Compilers
Compiler must be able to generate Windows code (except for build-only 
dependencies). There are several options:
• Microsoft Visual C/C++ (MSVC)

• Generally lags behind other compilers in support for HPC features (e.g. 
OpenMP), but latest MSVC 2019 is an improvement

• Only supported CUDA host compiler for nvcc on Windows
• Required for GUI code (e.g. Qt)
• Basic command-line arguments don’t conform to conventions of normal 

Unix compilers—so most Linux build tools won’t work, even under WSL
• LLVM Clang

• More Unix-like
• Also has clang-cl executable that uses MSVC command-line argument 

syntax

Build systems
• Modern CMake (target-based dependencies, CUDA-as-language, etc.) works 

really well
• No special cases for Windows needed, even in large mixed C++/CUDA 

code base
• But lots of legacy CMake code out there, and updating is often an 

all-or-nothing affair
• Still evolving, especially in CUDA features

• Autotools: Not really an option
• Doesn’t work with MSVC-style command-lines
• On Cygwin, links with Cygwin environment, which is GPL, so can’t be 

linked to commercial software
• MSVC cumbersome in Unix-like environments

• Uses nmake and jom instead of make
• Requires execution of a DOS batch script to set up environment
• We kluge this for our bash-based package management system; also 

needed for Spack


